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Quasi-Monte Carlo 

 Goal: Use point sequences that cover the integration 
domain as uniformly as possible, while keeping a 
‘randomized’ look of the point set 

 

Low Discrepancy  
(more uniform) 

High Discrepancy  
(clusters of points) 
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Transformation of point sets 
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MC vs. QMC 
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Quasi Monte Carlo (QMC) methods 

 Use of strictly deterministic sequences instead of random 
numbers 

 

 All formulas as in MC, just the underlying proofs cannot 
reply on the probability theory (nothing is random) 

 

 Based on sequences low-discrepancy sequences 
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Defining discrepancy 

 s-dimensional “brick” function: 

 

 

 

 True volume of the “brick” function: 

 

 MC estimate of the volume of the “brick”: 

total number of sample points 

number of sample points that  
actually fell inside the “brick” 
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Discrepancy 

 Discrepancy (of a point sequence) is the maximum 
possible error of the MC quadrature of the “brick” 
function over all possible brick shapes: 

 

 

 

 serves as a measure of the uniformity of a point set 

 must converge to zero as N -> infty 

 the lower the better (cf. Koksma-Hlawka Inequality)  
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Koksma-Hlawka inequality 

 Koksma-Hlawka inequality 

 

 

 

 

 

 

 the KH inequality only applies to f with finite variation 

 QMC can still be applied even if the variation of f is infinite 

„variation“ of f 
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Van der Corput Sequence (base 2) 

 

 

 

 

 

 

 

 point placed in the middle of the interval 

 then the interval is divided in half 

 has low-discrepancy 
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Van der Corput Sequence 

 

 b ... Base 

 

 radical inverse 
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Van der Corput Sequence (base b) 

 

double RadicalInverse(const int Base, int i) 

{ 

 double Digit, Radical, Inverse; 

 Digit = Radical = 1.0 / (double) Base; 

 Inverse = 0.0; 

 while(i) 

 { 

  Inverse += Digit * (double) (i % Base); 

  Digit *= Radical; 

  i /= Base; 

 } 

 return Inverse; 

} 
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Radical inversion based points in 
higher dimension 
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Use in path tracing 

 Objective: Generated paths should cover the entire 
high-dimensional path space uniformly 

 

 Approach: 

 Paths are interpreted as “points” in a high-dimensional 
path space 

 

 Each path is defined by a long vector of “random numbers” 

 Subsequent random events along a single path use 
subsequent components of the same vector 

 

 Only when tracing the next path, we switch to a brand new 
“random vector”  (e.g. next vector from a Halton sequence) 
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Quasi-Monte Carlo (QMC) Methods 

 Disadvantages of QMC: 

 

 Regular patterns can appear in the images (instead of the 
more acceptable noise in purely random MC) 
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Stratified sampling 
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10 paths per pixel 
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Quasi-Monte Carlo 
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Fixní náhodná sekvence 
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10 paths per pixel 
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